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Abstract— We consider the problem of vision-based coverage
control with a team of robots in the sense of dynamic coverage.
Therefore, the aim is to actively cover certain domain by
means of robots’ visual sensors while they navigate in the
workspace. Each robot is equipped with a conventional camera,
an anisotropic sensor modeled as a wedge-shaped region in
front of the robot. The contribution is a new algorithm for
coordinated coverage control which, weights local and global
information while avoiding local minima and obeying the
particularities of the anisotropic vision-based sensors. The
performance of the proposed technique is illustrated with
simulation results.

I. INTRODUCTION

Visual control is currently a mature field of research, nev-
ertheless it is still a very active area as new computer vision
algorithms or control techniques are being developed and
more ambitious applications are envisioned. Fundamental
concepts and basic approaches in visual servo control are
described in the tutorial [1]. More specific is the survey on
vision for mobile robot navigation presented in [2], where
visual control refers to the pose control of a vehicle in a
closed loop using the input of a visual sensor.

Although visual control and autonomous navigation for a
single robot is still an open research area, the use of mul-
tiple robots to fulfill particular tasks has been increasingly
demanding during the last decade. This is due not only to
the advances in hardware devices and commercial software
but also to the fact that multiple robots may carry out tasks
that are difficult or unfeasible for one single robot such
as exploration, surveillance, security or rescue applications.
However, not many works in the literature consider the use of
vision in the algorithm design for multi-robot systems. Some
examples of works using vision to fulfill tasks performed by
multiple mobile robots are the localization method presented
in [3], the vision-based formation control in [4] or the robot
coordination proposed in [5]. Other related works are [6], that
aims to enable groups of mobile robots to visually maintain
formations in the absence of communication, and [7], that
encapsulates the multi-robot system information in a single
homography so as to drive the team to a desired formation.

In this work, we focused on the problem of coverage
control by using a team of robots equipped with conventional
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cameras. The coverage task may be found in a wide variety
of applications such as demining, cleaning, lawn mowing,
painting or surveillance. However, the challenges involved in
the multi-robot system control are far from trivial and need
to be solved in order to exploit the benefits of multi-robot
systems for the efficient coordination of the resources.

The problem of coverage can be classified as static or
dynamic depending on how it is addressed. If the resources
or robots are static, the problem is known as allocation
of resources [8]. The other approach considers mobile re-
sources, and may also consider variable or unknown envi-
ronment. This problem is often referred to as area coverage
and, although multiple applications are possible, literature is
mainly focused on sensing tasks. Several approaches tackle
the problem by means of an optimization function to be
minimized in a decentralized manner with Voronoi partitions
[9], [10], by using potential fields [11], [12], or gradient-
based approaches [13], [14].

The goal of this work is to explore the feasibility of
an anisotropic sensor, i.e. the conventional camera, in the
context of dynamic coverage with a team of robots. The
problem consists in a coordinated covering of the workspace
with the camera field of view. Regarding the type of cam-
era selected, for the last years, the use of omnidirectional
cameras is growing because of their effectiveness due to the
panoramic view from a single image. This type of camera
can be modeled as an isotropic sensor with a circle shape.
However, some applications require better resolution rather
than a large field of view. In particular, we consider a camera
mounted onboard the robots pointing forward. The problem
of motion control of a single robot with camera field-of-view
constraints has been considered, for instance, in [15], [16].
There, the goal is to keep the camera field of view focused
in a particular zone of the environment during the navigation
rather than perform visual coverage.

To the best of our knowledge, this is the first dynamic
coverage control algorithm proposed for a team of robots
considering anisotropic visual sensors. Closely related works
are [10] that considers anisotropic sensors modeled with
elliptic shape and [17], [18] with the same wedge-shape
sensor considered in our work. However, both works focus on
the problem of coverage control in the sense of deployment,
whereas we are interested in the problem of dynamic cov-
erage. In this paper, we propose a new motion strategy that
weights continuously local and global components avoiding
local minima and providing an efficient coverage of the
domain. The local strategy is based on the gradient, while
a blob analysis based approach is defined for the global
strategy. The main novelty of this work resides in that the
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Fig. 1. Scheme of the variables of the sensing function. The dashed line
represents the area covered by the camera onboard

proposed approach overcomes the challenges raised by the
use of the camera sensor to achieve the coverage objective
efficiently.

The paper is organized as follows. Section II introduces
the problem formulation. The coverage control laws are pre-
sented in Section III. The strategy to select global objectives
avoiding local minima is presented in Section IV. Simula-
tions are given in Section V to illustrate the performance of
the proposed approach. Conclusion and avenues for future
research are given in Section VI.

II. PROBLEM FORMULATION

In this section we describe the framework for a team of
nonholonomic agents performing dynamic coverage tasks
with anisotropic sensors. The main objective is to reach a
coverage level Λ∗(x) > 0 inside a domain Dx ⊂ R2. We
assume the agents moves according to the following unicycle
model:

ṗi1 = vi cos(θi),

ṗi2 = vi sin(θi),

θ̇i = ωi.

(1)

Here, pi = [pi1 , pi2 ]
T is the position of agent i in a convex

domain Dp ⊂ R2, and θi ∈ [−π, π] is the orientation
angle. The positions and the orientation angles of agents are
assumed to be known, for instance, by visual localization or
by a GPS system. vi, ωi are the linear and angular velocity
inputs respectively. In this paper, we focus on sensing with
vision cameras so let us define the sensing ability αi(r, θix)
as:

αi(r, θix) =

{
αM

(R−r)(F−θix)
RF

, r ≤ R, θix ≤ F
0, elsewhere

(2)
where αM is the maximum ability of sensing, R is the
sensing range, r = ‖pi − x‖ is the distance from the agent
to a point x, F is the half of the angle of view of the
camera and θix = |θi − θx| is the angle between the camera
and the point x. A graphical depiction of the variables is
shown in Fig. 1. This wedge shaped function is maximum
in the position of the agent and decreases with the linear and
angular distance to the agent. The points that are nearer are
better sensed and then it will take less time to cover those
points. The coverage action of the team of agents is defined
as α =

∑
i∈{1,...,N} αi(r, θix), with N being the number

of robots. Furthermore we define Λ(t, x) as the coverage

developed by a team of agents over a point x at time t. The
coverage information is updated continuously as follows:

∂Λ(t, x)

∂t
= α(r, θix) (3)

We assume that the points are initially uncovered Λ(0, x) =
0, ∀x ∈ Dx. We introduce the lack of coverage Υ(t, x)
over a point x at time t as:

Υ(t, x) = max

(
0, 1−

Λ(t, x)

Λ∗(x)

)
. (4)

At this point let us define the error function of the whole
domain as:

eDx
(t) =

∫
Dx

Υ(t, x)dx

SDx

, (5)

where SDx
is the area of the surface of the domain, and the

error function of the actuator domain of each agent as:

eΩi
(t) =

∫
Ωi

Υ(t, x)dx

SΩi

, (6)

where Ωi is the sensing domain, and SΩi
is the area of the

surface of the sensing domain i.e. the area which the camera
sees.

III. DYNAMIC COVERAGE CONTROL LAWS

We divide our control strategy in two control laws that
are weighted during the coverage process. One part of the
control law depends on the local error, that is the error of
the points that are in the coverage domain of the agent. The
other part of the control law depends on the coverage error
of the whole domain.

A. Local control law

The speed of the local control law is controlled with the
amount of local error:

uloc
i = 1− eΩi

. (7)

In this way, when the local error is high, the agents slow
down to cover the domain, and when the local error is low,
they speed up to escape from covered areas. To obtain the
angular velocity we start by computing:

ẽ =

∫
Dx

∂Υ

∂t
dx = −

1

Λ∗(x)

∫
Ω−Υ0

α(r, θix)dx (8)

We take out from the integral the points of Dx that are not in
the coverage domain of the agents, i.e. the points that are not
in Ω =

⋃N

i=1 Ωi, and the points whose lack of coverage is
0, Υ0 = {x : Υ(t, x) = 0}, because both do not contribute
to the integral. To optimize the orientation of each robot
with respect to the variation of the error we take the partial
derivative as:

∂ẽ

∂θi
=

1

Λ∗(x)

∫
Ω−Υ0

(R − r)(θi − θx)

RFθix
dx (9)

With this expression we get the direction θloc
∗

i to obtain the
maximum benefit for developing local coverage . Therefore,
the contribution of the local control law to the control
strategy is given by (uloc

i , θloc
∗

i ).
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B. Global control law

When an agent falls into an area where the error is
constant or symmetric from the point of view of the camera,
expression in equation (9) equals zero, and the agent needs
another input to reach uncovered areas until the domain is
fully covered. In this section we propose a control law by
defining (uglo

i , θglo
∗

i ) to reach an uncovered point pobji , and
in section IV we will explain how to choose these points
between all uncovered points. The speed of the global control
law is controlled with the distance from the agent to the
objective, ‖pi−pobji ‖, minus a distance from where the agent
can sense the objective, for example R/2 as:

uglo
i =

2

π
arctan(‖pi − pobji ‖ −R/2). (10)

uglo
i is close to one until the agent approach the surrounding

area of the objective from where can cover it. Then, it
decreases to 0 at a distance equal to R/2, and is negative
inside a circle whose center is pi and radius R/2. Then, when
an agent is too near to the objective, it moves away avoiding
to drive in circles around the point to see. The orientation to
reach global objectives is obtained as:

θglo
∗

i = arctan 2(pi − pobji ). (11)

C. Coverage control law

In order to combine both global and local control laws let
us introduce a local weight W loc

i and a global weight W glo
i

as follows:

W loc
i (t) = eβΩi

(t) (12)

W glo
i (t) = 1− eβΩi

(t) (13)

where β ∈ R
+ is a parameter which allows tuning the

weights depending on the amount of error. We define the
angular error eθi ∈ (−π, π] as:

eθi = (θloc∗i − θi)W
loc
i + (θglo∗i − θi)W

glo
i , (14)

and the linear and angular velocities are finally obtained with:

vi =kv(u
loc
i W loc

i + uglo
i W glo

i )(1−
2

π
eθi), (15)

ωi =kωeθi(1− uglo
i ). (16)

kv and kω are the control gains of the linear and angular
velocity inputs, respectively. When the local error is high,
i.e. eΩi

is close to 1, W loc
i (t) is also close to 1, and the

agents obey the local control law which is based on the
gradient of the coverage error. Thus, the agents move to get
the most coverage benefit. However, when the local error is
low, the agents do not get benefit covering its neighborhood.
W loc

i (t) is close to 0, and the agents obey the global control
law, which direct them to new areas with higher error. These
control laws are both bounded by definition, with vi ∈
[−kv, kv] and ωi ∈ [−kωπ, kωπ], allowing a straightforward
implementation of the algorithm in real robots by adjusting
the gains to the maximum speed of the robots.

Algorithm 1 Blob-based algorithm for the selection of global
objectives

Require: Dx, Υ(t, x), Ψ, πj ;
Ensure: Ψ, πj ;

1: for j = 1,..,M do
2: if Υ(t, ψj) ≤ 0 then
3: Π = Π− πj ; Ψ = Ψ− ψj ;
4: end if
5: end for
6: for j = 1,..,M do
7: dmin

j = min(‖ψj − ψr‖), r = 1..M/j
8: end for
9: for j = 1,..,M do

10: if dmin
j < R then

11: Π = Π− πj ; Ψ = Ψ− ψj ;
12: end if
13: end for
14: Dblob = Dx −Π− π∅;
15: while Dblob �= ∅ do
16: (ψ1, ..., ψK , π1, .., πK) = blob(Dblob);
17: for k=1,..,K do
18: if ψk ∪ πk �= ∅ then
19: ΨM+1 = ψk; πM+1 = πk;
20: Dblob = Dblob − πk;
21: end if
22: end for
23: Dblob = erode(Dblob);
24: end while
25: Assign eroded points to the nearest blob;

IV. SELECTION OF GLOBAL OBJECTIVES

In this section, we propose a strategy to find areas with
large error and to provide the agents with inputs to reach
them (i.e. we now describe the procedure to define the values
of pobji used in section III.B). It is based on blob detection
of the uncovered information. We use this image processing
technique to find islands of uncovered information in the map
Λ(t, x), and then we compute their sizes and their centroids.
With this information we propose a criterium to select a
centroid as a global objective based on the uncertainty and
the proximity of the blobs. Hence, a global objective is the
centroid of an uncovered area which is close to the agent.

Let us define Ψ = {ψ1, ψ2, ..., ψj , ..., ψM} as the col-
lection of M global objectives, ψj ∈ Dx. We refer to
ψ’s as objectives and they represent points that belongs to
a set of uncovered points. Let us also define πj as the
collection of points of the domain composing each blob
and whose global objective is ψj , Π =

⋃M

j=1 πj as the
collection of points of the domain assigned to objectives ψj ,
and π∅ = {x ∈ Dx|Υ(t, x) ≤ 0} as the collection of points
that are covered. The method to select the global objectives
is described in Algorithm 1.

The algorithm starts by checking if some of the M global
objectives ψj have been covered. Those covered are erased
from the list of global objectives Ψ and the points πj
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Fig. 2. Example of an uncertainty map that causes the centroid to fall
inside of the blob. Black area represents the uncovered zone and white the
covered zone whose points belongs to π∅. The centroids are represented
by rhombi. The uncertainty map has 3 blobs and then 3 global objectives
are generated. The points πj in black areas are assigned to their respective
centroids ψj .

assigned to the objective are released. It also checks if there
are objectives that are closer than a distance R, which is
the coverage radius of the agents. Those objectives are also
erased and their points released to try to merge them to get a
bigger blob in the blob searching procedure. Afterwards, the
domain to obtain the new blobs of the scene is computed by
subtracting the covered points π∅ and the assigned points Π
from the domain to cover Dx. With blob(Dblob) the centroids
ψk and the points πk of the K regions of the space to be
covered are obtained (as shown in Fig. 2). Then, the centroids
ψk are checked to see if they belong to the points πk of the
blob. If the centroids ψk are inside the blob, they and the
points of the blobs πk are saved, whereas the blob domain
is reduced by the points of the new found blob.

Once the checking is complete, it is possible that some
centroids fall outside of their respective blobs. This is not a
desired situation because due to the coverage range of the
agent, it is possible that once the agent has arrived to the
global objective, it cannot reach uncovered points causing a
blockage. In this case, the image is eroded (as depicted in
Fig. 3). This results in the elimination of the points in the
domain that are in contact with covered or assigned points in
such a way that the irregularities of the blob that cause the
centroid to fall outside the blob are eliminated. Afterwards,
blob analysis is repeated while the blob domain is not null.
Finally, the eroded points are assigned to the nearest blob.
It is possible but unlikely that, due to symmetries, no global
objectives are found. In that case a nearest uncovered point
is the only global objective until the symmetry breaks.

The choice of the objective pobji for each robot i is done
according to proximity. First, the distance between the i-th
agent and the j-th centroid is calculated to create a matrix
D as follows:

D(i, j) =

(
‖pi − ψj‖

max(‖pi − ψj‖)

)
. (17)

It is divided by the maximum distance in such a way that the
elements of D are in interval (0, 1]. Then, with this matrix,
the global objectives are assigned using Algorithm 2. It is
repeated until all the agents have a global objective. First, the
algorithm finds the minimum distance between an agent and
a centroid. Then, the agent takes that centroid as the global
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Fig. 3. Two examples of uncertainty maps that cause the centroid to fall
outside of the blob. In the left column black areas represent the uncovered
zones and white the covered zones. The centroids are represented by rhombi.
A blob analysis of these scenes produces in each case only one connected
blob with one centroid. Due to the shapes of the blobs, the centroids fall
outside their blobs and according to Algorithm 1 an erosion process is
needed. In the right column the iterative erosion process is shown until the
centroid falls into the blob. After this process is completed, eroded points
are assigned to the last centroids obtained according to proximity.

objective. Next, the algorithm adds 1 to the column where
the distances of the centroid to other has been calculated to
avoid that the centroid is assigned to other agent, distributing
the team between all the available centroids. Also, the row
of the agent is increased by N units to avoid the assignation
of other centroid to the agent. If there are more agents than
centroids, when all the centroids have been assigned once,
all the distances between centroids and non assigned agents
are increased by 1 and then, the centroids can be assigned
again with the distance criterium. This process is repeated

N/M� times distributing at most �N/M
 to each centroid
and at least 
N/M�.

Algorithm 2 Assignation of objectives
Require: D, Ψ
Ensure: pobji

1: repeat
2: [i, j] = {i, j : D(i, j) = min(D)};
3: pobji = ψj ;
4: D(i, :) = D(i, :) +N ;
5: D(:, j) = D(:, j) + 1;
6: until <All agents have an objective>

V. SIMULATION RESULTS

In this section we present some simulation results that il-
lustrate the behavior of the proposed algorithms. The domain
to cover Dx is a square of 100x100 units, whereas Dp = R2.
The coverage objective is Λ∗ = 100. There are four agents
with: R = 20, F = 54o, αM = 50, β = 1, kv = 1, and
kω = 1. Fig. 4 shows the evolution of the normalized error
throughout the coverage process. In 592 units of time, the
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Fig. 4. Evolution of the normalized coverage error
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Fig. 5. Motion action of the agents. Solid line represents the linear action
and dotted line the angular velocity.

objective has been fully accomplished at all the points of
the domain. The motion actions to develop the coverage are
shown in Fig. 5, and the map of the lack of coverage in each
point at different times is shown in Fig. 6.
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Fig. 6. Evolution of the global coverage map throughout the coverage
process. Small circles represent the position of the robots and the coverage
domain is represented by a dashed line. The domain is rather covered at
t=500 and it is totally covered at t=592.
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Fig. 7. Amount of coverage developed perpendicular to vi when the agent
moves along x1.

We also develop simulations to check the efficiency in the
usage of the robots. First, we start by computing the total
ability of sensing A:

A = 2

∫ F

0

∫ R

0

α(r, θix )rdrdθix (18)

With this value, we can compute the minimum time to
completion for N agents t∗N :

t∗N =

∫ ∫
Dx

Λ∗(x1, x2)dx1dx2

A ·N
, (19)

Lastly, let us compare our algorithm with a typical path
planning coverage trajectory carried out in zig-zag with
maximum speed. The amount of coverage Λ(x, t) developed
by one agent in the perpendicular direction to vi with vi = 1
and ωi = 0 is shown in Fig. 7. The agent reaches the
coverage objective over the points placed at d100 = 2.72
units away from the agent and half of the coverage objective
over the points placed at d50 = 3.865 units away from the
agent. The trajectory is developed taking into account these
parameters and with a length L=140 units as shown in Fig.
8. The time to completion for one agent is tzz1 = 2080.6
units of time with a path length of PLzz

1 = 2054.6 units.
Assuming perfect coordination between teams of agents, we
have tzzN = 2080.6/N and we also assume PLzz

N = 2054.6.
Thus, we compute Ezz

N = t∗N/tzzN .
In Fig. 9 we show the relation between the optimum and

our algorithm, and the relation between the optimum and
the zig-zag algorithm from 1 to 30 agents. The time to
completion tN of teams of robots varying from 1 unit to
30 units have been computed running 100 simulations in
each case and taking the average value. For small teams
our proposal takes 4 times the time to completion of the
optimum, and as the team grows it tends to 5, compared
with the zig-zag path that is 3 times slower. Furthermore,
we also compare the sum of the path length of the robots
to develop the coverage. We compute the path length of 100
simulations and show the average in Fig.10. Since the speed
is regulated with the local error, our algorithm make the most
of the traveled path. It takes some more time to cover the
domain, but the path length needed in our algorithm is around
a 55% of the path length needed with zig-zag strategy.
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Fig. 9. Comparison of the time to completion of several teams of
agents developing optimum coverage with our algorithm and with a zig-
zag algorithm.

VI. CONCLUSION

In this paper we have proposed a new control algorithm
for the dynamic coverage of a domain developed by a team
of agents with anisotropic vision based sensors. The control
law weights local and global actions, depending on local
coverage error and global error map, respectively, to give
more importance to local objectives when the local error is
high and to global objectives when the benefit of developing
the coverage in the neighborhood of an agent is small.
We also propose, a new strategy to select global objectives
based on blob analysis of the whole map. Additionally, we
impose bounds on both linear and angular velocities. Finally,
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Fig. 10. Comparison of the path length of several teams of agents
developing coverage with our algorithm and with a zig-zag algorithm.

simulations are provided to illustrate the approach. Current
work focuses on the collision avoidance problem and the
coverage with decentralized information. In this work, we
assume that the robots do not produce occlusions between
them. Even if the convergence is not compromised, future
work would study this issue regarding the performance of
the proposed algorithm.
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